数据精准分析怎么做?
请问,数据精准分析怎么做?2.将收集到的数据进行分析。通常是将客户分为有效客户和无效客户,有效客户通常指的是活跃和不活跃的客户,然后再将不活跃的客户进行下一步的细分,因为这一类的客户是最有可能再转化回活跃客户的。
3.通过分析获得了客户的分类,然后就需要对客户进行管理,建立有效的客户管理制度,定期进行检测,通过客户分析会、例会等讨论出客户活动的方案,有的放矢针对客户的情况进行下一步的营销。
4.除了用有效无效来分析客户,还需要通过客户所带来的价值来分析客户。也就是说那些能够为公司带来大利润的客户就是高价值客户,数量占少数,但是重要程度高,这部分客户通过分析应该是公司重点提供支持去维护的客户。
5.需要注意的是客户分析不是一成不变的,需要定期进行分析维护。因为随着生意的变化和外界环境的变化,客户本身就存在着变化,很有可能今天这个重点客户由于公司业务调整变得不再重要,那么这种情况就需要重新划分客户的等级。
数据精准营销的七个关键要素
数据精准营销的七个关键要素说到大数据精准营销,不得不先提个性化的用户画像,我们针对每一类数据实体,进一步分解可落地的数据维度,刻画说到大数据精准营销,不得不先提个性化的用户画像,我们针对每一类数据实体,进一步分解可落地的数据维度,刻画TA的每一个特征,在聚集起来形成人群画像。
01用户画像
用户画像是根据用户社会属性、生活习惯和消费行为等信息而抽象出的一个标签化的用户模型。具体包含以下几个维度:
用户固定特征:性别,年龄,地域,教育水平,生辰八字,职业,星座
用户兴趣特征:兴趣爱好,使用APP,网站,浏览/收藏/评论内容,品牌偏好,产品偏好
用户社会特征:生活习惯,婚恋,社交/信息渠道偏好,宗教信仰,家庭成分
用户消费特征:收入状况,购买力水平,商品种类,购买渠道喜好,购买频次
用户动态特征:当下时间,需求,正在前往的地方,周边的商户,周围人群,新闻事件如何生成用户精准画像大致分成三步。
1.采集和清理数据:用已知预测未知
首先得掌握繁杂的数据源。包括用户数据、各式活动数据、电子邮件订阅数、线上或线下数据库及客户服务信息等。这个是累积数据库;这里面最基础的就是如何收集网站/APP用户行为数据。比如当你登陆某网站,其Cookie就一直驻留在浏览器中,当用户触及的动作,点击的位置,按钮,点赞,评论,粉丝,还有访问的路径,可以识别并记录他/她的所有浏览行为,然后持续分析浏览过的关键词和页面,分析出他的短期需求和长期兴趣。还可以通过分析朋友圈,获得非常清晰获得对方的工作,爱好,教育等方面,这比个人填写的表单,还要更全面和真实。
我们用已知的数据寻找线索,不断挖掘素材,不但可以巩固老会员,也可以分析出未知的顾客与需求,进一步开发市场。
2.用户分群:分门别类贴标签
描述分析是最基本的分析统计方法,描述统计分为两大部分:数据描述和指标统计。数据描述:用来对数据进行基本情况的刻画,包括数据总数,范围,数据来源。指标统计:把分布,对比,预测指标进行建模。这里常常是Data mining的一些数学模型,像响应率分析模型,客户倾向性模型,这类分群使用Lift图,用打分的方法告诉你哪一类客户有较高的接触和转化的价值。
在分析阶段,数据会转换为影响指数,进而可以做"一对一"的精准营销。举个例子,一个80后客户喜欢在生鲜网站上早上10点下单买菜,晚上6点回家做饭,周末喜欢去附近吃日本料理,经过搜集与转换,就会产生一些标签,包括"80后""生鲜""做饭""日本料理"等等,贴在消费者身上。
3.制定策略:优化再调整
有了用户画像之后,便能清楚了解需求,在实际操作上,能深度经营顾客关系,甚至找到扩散口碑的机会。例如上面例子中,//www.souquanme.com若有生鲜的打折券,日本餐馆最新推荐,营销人员就会把适合产品的相关信息,精准推送这个消费者的手机中;针对不同产品发送推荐信息,同时也不断通过满意度调查,跟踪码确认等方式,掌握顾客各方面的行为与偏好。
除了顾客分群之外,营销人员也在不同时间阶段观察成长率和成功率,前后期对照,确认整体经营策略与方向是否正确;若效果不佳,又该用什么策略应对。反复试错并调整模型,做到循环优化。
这个阶段的目的是提炼价值,再根据客户需求精准营销,最后追踪客户反馈的信息,完成闭环优化。
我们从数据整合导入开始,聚合数据,在进行数据的分析挖掘。数据分析和挖掘还是有一些区别。数据分析重点是观察数据,单纯的统计,看KPI的升降原因。而数据挖掘从细微和模型角度去研究数据,从学习集、训练集发现知识规则,除了一些比较商业化的软件SAS,WEKA功能强大的数据分析挖掘软件,这边还是更推荐使用R,Python,因为SAS,SPSS本身比较昂贵,也很难做页面和服务级别的API,而Python和R有丰富的库,可以类似WEKA的模块,无缝交互其他API和程序,这里还需要熟悉数据库,Hadoop等。
02数据细分受众
“颠覆营销”书中提到一个例子,可以引述一下,大家思考一个问题:如果你打算搜集200份有效问卷,依照以往的经验,你需要发多少份问卷,才能达到这个目标?预计用多少预算和时间来执行?
以往的方法是这样的:评估网络问卷大约是5%的回收率,想要保证收到200份的问卷,就必须有20倍的发送量,也就是发出4000份问卷,一个月内如果可以回收,就是不错的表现。
但现在不一样了,在执行大数据分析的3小时内,就可以轻松完成以下的目标:
精准挑选出1%的VIP顾客
发送390份问卷,全部回收
问卷寄出3小时内回收35%的问卷
5天内就回收了超过目标数86%的问卷数
所需时间和预算都在以往的10%以下
这是怎么做到在问卷发送后的3个小时就回收35%?那是因为数据做到了发送时间的&hjHJFquot;一对一定制化",利用数据得出,A先生最可能在什么时间打开邮件就在那个时间点发送问卷。
举例来说,有的人在上班路上会打开邮件,但如果是开车族,并没有时间填写答案,而搭乘公共交通工具的人,上班路上的时间会玩手机,填写答案的概率就高,这些都是数据细分受众的好处。
03预 测
“预测”能够让你专注于一小群客户,而这群客户却能代表特定产品的大多数潜在买家。
当我们采集和分析用户画像时,可以实现精准营销。这是最直接和最有价值的应用,广告主可以通过用户标签来发布广告给所要触达的用户,这里面又可以通过上图提到的搜索广告,展示社交广告,移动广告等多渠道的营销策略,营销分析,营销优化以及后端CRM/供应链系统打通的一站式营销优化,全面提升ROI。
我们再说一说营销时代的变迁,传统的企业大多还停留在“营销1.0”时代,以产品为中心,满足传统的消费者需求,而进入“营销2.0”,以社会价值与品牌为使命,也不能完全精准对接个性化需求。进入营销3.0的数据时代,我们要对每个消费者进行个性化匹配,一对一营销,甚至精确算清hjHJF楚成交转化率,提高投资回报比。
大数据下的营销颠覆经典的营销4P理论,Product,Price,Place,Promotion,取而代之的是新的4P,People,Performance,Process,Prediction。在大数据时代,线下地理的竞争边界早就不存在,比的是早一步的先知能力,利用大数据,从顾客真实交易数据中,预测下一次的购买时间。 营销3.0时代关键词就是“预测”。
预测营销能够让你专注于一小群客户,而这群客户却能代表特定产品的大多数潜在买家。以上图为例,你可以将营销活动的目标受众锁定为20万潜在客户或现有客户,其中包括特定产品的大多数买家(4万人)。你还可以拨出部分预算用于吸引更小的客户群(比如20% 的客户),而不是整个客户群,进而优化你的支出。
过去我们看数据可能是被动的方式,但预测营销强调是决策价值,比如购买时间,你该看的不是她最后的购买日期,而是下次购买的时间,看未来的存活概率,最后生成客户终身价值(CLV)。预测营销催生了一种新的数据驱动营销方式,就是以客户为中心,核心在于帮助公司完成从以产品或渠道为中心到以客户为中心的转变。
04精准推荐
大数据最大的价值不是事后分析,而是预测和推荐,我就拿电商举例,"精准推荐"成为大数据改变零售业的核心功能。譬如服装网站Stitch fix例子,在个性化推荐机制方面,大多数服装订购网站采用的都是用户提交身形、风格数据+编辑人工推荐的模式,Stitch Fix不一样的地方在于它还结合了机器算法推荐。这些顾客提供的身材比例,主观数据,加上销售记录的交叉核对,挖掘每个人专属的服装推荐模型。 这种一对一营销是最好的服务。
数据整合改变了企业的营销方式,现在经验已经不是累积在人的身上,而是完全依赖消费者的行为数据去做推荐。未来,销售人员不再只是销售人员,而能以专业的数据预测,搭配人性的亲切互动推荐商品,升级成为顾问型销售。
05技术工具
关于预测营销的技术能力,有几种选择方案:
1、使用预测分析工作平台,然后以某种方法将模型输入活动管理工具;
2、以分析为动力的预测性活动外包给市场服务提供商;
3、评估并购买一个预测营销的解决方案,比如预测性营销云和多渠道的活动管理工具。
但无论哪条路,都要确定三项基本能力:
1)连接不同来源的客户数据,包括线上,线下,为预测分析准备好数据 ;
2)分析客户数据,使用系统和定制预测模型,做高级分析 ;
3)在正确时间,正确客户,正确的场景出发正确行为,可能做交叉销售,跨不同营销系统。
06预测模型
预测客户购买可能性的行业标准是RFM模型(最近一次消费R,消费频率F,消费金额M),但模型应用有限,本质是一个试探性方案,没有统计和预测依据。“过去的成绩不能保证未来的表现”,RFM只关注过去,不去将客户当前行为和其他客户当前行为做对比。这样就无法在购买产品之前识别高价值客户。
我们聚焦的预测模型,就是为了在最短时间内对客户价值产生最大影响。这里列举一些其他模型参考:
参与倾向模型,预测客户参与一个品牌的可能性,参与定义可以多元,比如参加一个活动,打开电子邮件,点击,访问某页面。可以通过模型来确定EDM的发送频率。并对趋势做预测,是增加还是减少活动。
钱包模型,就是为每个客户预测最大可能的支出,定义为单个客户购买产品的最大年度支出。然后看增长模型,如果当前的总目标市场比较小,但未来可能很大,就需要去发现这些市场。
价格优化模型,就是能够去最大限度提升销售,销量或利润的架构,通过价格优化模型为每个客户来定价,这里需要对你想要的产品开发不同的模型,或者开发通用,可预测的客户价格敏感度的模型,确定哪一块报价时对客户有最大的影响。
关键字推荐模型,关键字推荐模型可以基于一个客户网络行为和购买记录来预测对某个内容的喜爱程度,预测客户对什么热点,爆款感兴趣,营销者使用这种预测结果为特定客户决定内容营销主题。
预测聚集模型,预测聚集模型就是预测客户会归为哪一类。
07AI在营销领域的应用
去年人工智能特别火,特别是深度学习在机器视觉,语言识别,游戏AI上的突飞猛进,以至于人们开始恐慌人工智能是不是已经可以接管人类工作,我个人是对新技术有着强烈的兴趣,也非常看好新科技,数据与现实的关联。
我以前在国外零售店买单的时候经常被询问“你有没有购物卡”,当我说没有收银员会赶紧劝我免费开通,有打折优惠,只需要填个手机号和邮箱,后面就可以针对我的购买记录做营销活动,而当我下次进来,他们就让我报出电话号码做消费者识别,当时我想如果做到人脸识别,岂不是更方便,刷脸就可以买单。而这个场景在去年也有了实验,蚂蚁金服研发出了一个生物识别机器人,叫蚂可Mark,据说其认脸能力已经超越了人类肉眼的能力。还有VR购物,Amazon推出的无收银员商店Amazon Go,通过手势识别,物联网和后续数据挖掘等技术实现购物体验。
针对营销领域,主要有以下三种预测营销技术:
1、无监督的学习技术
无监督学习技术能识别数据中的隐藏模式,也无须明确预测一种结果。比如在一群客户中发现兴趣小组,也许是滑雪,也许是长跑,一般是放在聚类算法,揭示数据集合中 真实的潜在客户。所谓聚类,就是自动发现重要的客户属性,并据此做分类。
2、 有监督的学习技术
通过案例训练机器,学习并识别数据,得到目标结果,这个一般是给定输入数据情况下预测,比如预测客户生命周期价值,客户与品牌互动的可能性,未来购买的可能性。
3、强化学习技术
这种是利用数据中的潜质模式,精准预测最佳的选择结果,比如对某用户做促销应该提供哪些产品。这个跟监督学习不同,强化学习算法无须仅需输入和输出训练,学习过程通过试错完成。
从技术角度看,推荐模型应用了协同过滤,贝叶斯网络等算法模型。强化学习是被Google Brain团队的负责人Jeff Dean认为是最有前途的AI研究方向之一。最近Google的一个AI团队DeepMind发表了一篇名为《学会强化学习》的论文。
按团队的话来说,叫做“学会学习”的能力,或者叫做能解决类似相关问题的归纳能力。除了强化学习,还在迁移学习。迁移学习就是把一个通用模型迁移到一个小数据上,使它个性化,在新的领域也能产生效果,类似于人的举一反三、触类旁通。
强化学习加上迁移学习,能够把小数据也用起来,我认为是很激动人心的,通过AI来创造AI,数据科学家的部分工作也可以让机器来实现了。
互联网大数据更科学精准
互联网大数据更科学精准_数据分析师考试“关于数据那点事儿,我们一直在努力,把‘人为’痕迹降到最低。”华西都市报年度名人堂活动,希望互联网大数据更科学精准_数据分析师考试
“关于数据那点事儿,我们一直在努力,把‘人为’痕迹降到最低。”华西都市报年度名人堂活动,希望用一份联动云数据、席卷网络的榜单还原真实的2014。
“就各种榜单而言,仅单一的媒体评选,会让投票局限在本地读者;而专家评选,又只代表了精英群体;如果是一个全国性的评选,互联网大数据的评选就会更加科学、全面、精准。”中山大学传播与设计学院院长张志安,作为70后年轻学者,在新闻学界和业界都有很高的知名度。他接受华西都市报记者采访时表示,线上线下结合评选,会更具公信力和影响力。
正面负面评价都需考虑
华西都市报年度名人堂将联合中国最大的音乐服务平台中国移动音乐基地、中国最具影响力的搜索平台百度、中国第一大艺术门户网站雅昌艺术网,重磅发布年度音乐、年度电视剧、年度电影、年度书画四大榜单。相比于传统的读者或部分观众投票,这份联动云数据的榜单,还需要注意些什么?
“如果是最受关注的,那么只需要点击率即可,而如果是最受欢迎的,那么正面负面的评价都需要考虑,这就是我们所说的观点态度数据收纳。更深层次的评价,关注度和观点态度,草根和精英,都应该包含其中,相互结合。”张志安举例说,电影除票房数据外,还需要网络口碑数据,而这其中就应该有视频点击次数,微博微信转发和讨论量,传统媒体提及率,移动客户端、论坛自媒体讨论等等。
线上线下结合颇为关键
用大数据印证时代精神,而它的具体表现应该如何?张志安认为,“所谓的大数据时代,大概就是人可以被更精准地研究和预测,但单一媒体自己不算大数据,算小数据,因为不够清晰量也比较少。对媒体来讲,重点不是自己的大数据管理,而是大数据思维的运用,借用专业的机构,把精准分析和理念呈现出来。”
张志安表示,一个作品的影响力,至少有三方面的东西才能证明,“通俗地说就是线下行为,传统媒体内容数据,互联网数据。如果是单一数据,你可能面对的问题会是只有年轻人或者只有活跃的人参与,这样的评选就不够全面和精准。所以,如何注意到线上和线下的结合,是颇为重要的关键。”
以上是小编为大家分享的关于互联网大数据更科学精准的相关内容,更多信息可以关注环球青藤分享更多干货
如何分析数据 获得精准用户?
众所周知,互联网产品离不开用户,但是我这里讲到的创新产品的分析可能会颠覆大家以往的根据用户需求提出产品解决方案的方式。“创新”一词可谓是无处不在,但又是那样遥不可及,互联网时代创新是一种跨越,拥有创新思维的企业经受得住市场的考验立于不败之地,同样的道理,互联网产品设计中的用户分析一样离不开创新思维的推动。伟大的乔布斯说过这样一句话“不必做市场调查,因为消费者自己也不知道自己想要什么。”那么,到底应该怎样正确的理解这句话呢?看这里!首先,我提出的“创新”的产品是指未来的,而未来创新产品的要点在于供给者提出一个全新的解决方案来满足用户的需求,而不是用户自己想到的解决方案。打个比方,在古代没有汽车、飞机的时候,用户出行的需求可能仅仅是想要更加便捷快速,但是那时候用户不会提出我想要汽车或飞机这样的出行工具的想法,甚至大多数人们觉得汽车或飞机这样出行工具的想法简直是天方夜谭。所以这样的产品不是用户自己想到的,而是供给者提出的一个创新的产品解决方案,同时满足了用户出行的便捷快速,甚至舒适的需求。用户需求调研不是通过需求提出什么样的功能或服务,而是去验证我们的产品理念是否能让用户接受。看到这里应该明白伟大的乔布斯怎么会说出那样的话了吧。那么我们怎么去找到这样创新产品的解决方案呢?答案在这里。产品用户分析体系来源于互联网知识投资,属于互联网知识投资的一部分。互联网知识投资体系主要有五大部分组成,分别是行业分析体系、产品建设体系、产品运营体系、团队建设体系、资本运作体系。可以看出,互联网知识投资是一个综合而全面的系统,目的是对投资标的进行全面的评估和管理,以确保高成功率和高回报,实现商品化、规模化,以取得高资本收益的一种投资过程。用户分析是产品建设体系的一部分,在互联网知识投资体系里也就包括了产品建设体系,这给产品设计带来了无限的可能。首先 ,在进行用户分析时,对目标用户进行分类,分为三类:前卫(10%)、普通(80%)、保守(10%)。而在分析用户需求时,着重对前卫人群的需求进行分析,往往这些人都是比较新潮、时尚、有创意、个性以及流行的趋势。当产品首先满足这类人群的需求后,那么很有可能发展成为普通人的需求。这就是创新产品的根据,也让创新有方法而行。 我们回过头看看苹果手机、Google浏览器等大咖的发展就会明白。苹果手机最初是为了极客而研发的定制产品,极客这类人群具有鲜明的特征,追求时尚、新颖等,而这类人群也是极少数的,满足了他们需求的苹果产品,在之后的发展中迅速得到了大众的认可和喜爱,创下了苹果手机销售佳绩,甚至成为了当今的“街机”。Google浏览器最初是为了少数科技人员研发,用于搜索的也只是技术上的解决问题,但现在发展成为了最大的搜索引擎。这些都是鲜活的证明。在互联网知识投资的指导下,产品用户分析突破了原先定式的“人物画像”模式,转变为对目标用户进行分类(前卫(10%)、普通(80%)、保守(10%))的创新。互联网知识投资完整的体系和严谨的态度,给产品用户分析带来了广阔的前景,相信在互联网知识体系的指导下,做出类似于苹果手机这样的案例并不是难事。
-
大数据应用必要条件:数据真实和准确
大数据应用必要条件:数据真实和准确《哈佛商业评论》最新一期的封面上,一位勇士正挥舞着长鞭,试图驾驭大数据这匹“烈马”。的确,大数据大数据应用必要条件:数据真实和准确
《哈佛商业评论》最新一期的封面上,一位勇士正挥舞着长鞭,试图驾驭大数据这匹“烈马”。的确,大数据的重要性已是公认,可你有没有想过真正想获取大数据价值的人能以何为鞭?仅有鞭在手是否足矣?
“IBM对大数据有自己独到的观点。”IBM软件集团大中华区业务分析洞察及智慧地球解决方案总经理卜晓军在主题为“大数据大洞察大未来”的年度大搜趣网数据战略发布会上的发言举重若轻。的确,IBM严谨的智慧分析洞察方法论、完善的大数据平台解决方案以及广泛深刻的行业落地实践,让IBM有底气宣布即将驯服大数据,IBM的大数据平台或许就是企业正在苦苦寻hjHJF找的“长鞭”和“缰绳”。
对付大数据4个V
大数据的3V特点(Volume、Velocity、Variety)已无需赘言——“过去两年里所产生的数据量占到人类有史以来所积累的数据总量的90%”,“每秒钟有500万笔交易发生,每天有5亿个通话记录产生”,“80%的数据增长来源于图片、视频和文档”。这就意味着在应对大数据时,要集成和管理高容量、即时、多类型和分散来源的数据。
“这一切只是开始。”卜晓军补充道,“3V只是对大数据最基本特征的归纳,实际上,大数据向外延伸的涵义很丰富。”IBM就归纳总结了第4个V——Veracity(真实和准确),为什么第4个V足以与前3个V相提并论?“这是因为,只有真实而准确的数据才能让对数据的管控和治理真正有意义。”随着社交数据、企业内容、交易与应用数据等新数据源的兴起,传统数据源的局限性被打破,企业愈发需要有效的信息治理以确保其真实性及安全性。
如何充分应对大数据的4V特性,成为了想获取大数据深层价值者面前的一道难题。基于“3A5步”动态路线图的大数据战略再次体现了IBM完整的软件体系架构和综合能力。
“单独谈大数据没有意义,正如认为Hadoop足以解决大数据所有问题一样过于片面。”IBM软件集团大中华区信息管理软件总经理卢伟权强调,“大数据应该渗透到企业的IT架构中,这就要求大数据平台具备在信息原有的形式上进行进一步的分析、使所有的数据具有可视性并被有效用来分析、为新的分析应用开发更加有效的环境、优化与合理分配工作量、安全与治理等能力,兼容企业级的可用性、管理性、安全性和集成性。”
Hadoop缺乏数据管理的能力,IBM将Hadoop整合到大数据平台中并结合已有的产品,由此以四大核心能力Hadoop系统、流计算、数据仓库和信息整合与治理为支点提供端到端的大数据解决方案。
卢伟权总结道:“IBM将数据库领域里多年积累的经验,和对用户需求的高度考量融合到大数据平台中,通过‘增强’的理念把大数据解决方案有机整合到客户现有的数据平台上,保护客户现有的投资,在不摈弃传统数据仓库的前提下,通过信息整合和治理等工具,为客户创造效率和成本的最佳平衡。”
落脚点是行业应用
不落实到行业,不出示行业应用,人们对大数据的感知仍然会停留在“它仅仅是一个技术趋势”的肤浅层面。只有让大数据成为新的解决业务问题的手段,才能打破大数据怀疑论者的疑虑,才能说明大数据可用——正如《哈佛商业评论》英文版总编辑阿迪伊格内休斯所言,“大数据就在那里,关键看它如何为你的公司所用”。
“端到端的总体技术,包括信息治理和集成、大数据管理、实时分析,最后的落脚点是行业应用。”IBM中国开发中心信息管理首席架构师及大数据架构师陈奇说明技术服务于商业是终极追求。
行业应用场景是IBM大数据策略最有力的说客,在数个主要行业中应对大数据的相关场景和实践经验的分享让其优势不言自明。
伴随着制造业演变为“供应链核心模式”,IBM软件集团制造事业群总经理萧丁瑞希望制造业企业在IBM的帮助下实现供应链的可见性,以快速有效的方式处理供应链环节中的数据,弱化需求与供给之间的波动传导,达到产销协同。
IBM软件集团大中华区架构师总经理林旭认为,随着竞争不断激化,实时数据处理和客户行为预测成为运营商抢占的高地。IBM有能力帮助电信公司整理分散数据,管理动态数据,实时获取用户行为分析,增强客服效率和业务推送精准度。
“在金融行业中,客户数据是最珍贵的,这就决定了大数据平台必须是对传统数据仓库的补充和增强。”IBM软件集团大中华区银行业解决方案高级顾问陈剑指出,“此外,金融行业除了对于用户行为预测和实时处理等需求之外,还面临着风险和欺诈的巨大挑战。”IBM大处理解决方案可建立风险模型,通过实时匹配交易行为模型,对风险和欺诈进行监控,并补充和增强原有传统数据仓库中客户档案和信息。
以上是小编为大家分享的关于大数据应用必要条件:数据真实和准确的相关内容,更多信息可以关注环球青藤分享更多干货